Loading...
Searching...
No Matches
IHTP01inverseLaplacian_CG Class Reference

Class where the first inverse heat transfer problem tutorial is solved using Alifanov's regularization. More...

#include <IHTP01inverseLaplacian.H>

Inheritance diagram for IHTP01inverseLaplacian_CG:
inverseLaplacianProblem_CG inverseLaplacianProblem laplacianProblem reductionProblem

Public Member Functions

 IHTP01inverseLaplacian_CG (int argc, char *argv[])
 
void postProcess (word folder, word heatFluxFieldName, scalar innerField=0.0)
 Post process all the estimated heat fluxes heatFluxFieldName inside folder computing the relative error field with respect to gTrue with the related L2 and Linfty norms.
 
void assignDirectBC ()
 Assign the correct boundary condition to direct problem and assign -g/k to the hotSide patch.
 
void solveTrue ()
 Perform a solution of the direct problem with the correct boundary conditions.
 
- Public Member Functions inherited from inverseLaplacianProblem_CG
 inverseLaplacianProblem_CG ()
 Null constructor.
 
 inverseLaplacianProblem_CG (int argc, char *argv[])
 Construct with argc and argv. Reads the thermocouples dictionary.
 
virtual ~inverseLaplacianProblem_CG ()
 Destructor.
 
void set_valueFraction ()
 Set valueFraction list values for Robin condition.
 
void assignAdjointBC ()
 Set BC of the adjoint problem.
 
volScalarField assignAdjointBCandSource ()
 Assign the BC for the adjoint problem and returs the source field.
 
void assignSensitivityBC ()
 Set BC and IF of the sensitivity problem.
 
void solveAdjoint ()
 Solve adjoint problem.
 
void solveSensitivity ()
 Solve sensibility problem.
 
void solve (const char *problemID)
 Solve for direct and sensitivity.
 
void defineThermocouplesPlane ()
 Identifies the plane defined by the thermocouples.
 
void sensibilitySolAtThermocouplesLocations ()
 Fill the Foam::vector containing the values of the sensitivity solution at the thermocouples locations.
 
int conjugateGradient ()
 Conjugate gradient method.
 
void computeGradJ ()
 Computes the gradient of cost function J and its L2 norm.
 
void searchDirection ()
 Computes the search direction P.
 
void computeSearchStep ()
 Compute the search step beta.
 
void updateHeatFlux ()
 Updates the heat flux in the conjugate gradient iterations.
 
int conjugateGradientConvergenceCheck ()
 Convergence cher for the conjugate gradient method.
 
int isInPlane (double cx, double cy, double cz, Foam::vector thermocoupleCellDim)
 Checks if a cell crosses the interpolation plane.
 
void writeFields (label folderNumber, const char *folder)
 Writes fields to file.
 
void thermocouplesInterpolation ()
 Interpolates the thermocouples measurements in the plane defined in readThermocouples() using radial basis functions.
 
void thermocouplesInterpolation (DenseMatrix &RBFweights, DenseMatrix &RBFbasis)
 Interpolates the thermocouples measurements in the plane defined in readThermocouples() using Radial Basis Functions (RBF) Assumes thermocouples are all at the same y coordinate.
 
void differenceBetweenDirectAndMeasure ()
 Computes the difference between direct problem solution and measure.
 
void restart (word fieldName="all")
 Restart fields.
 
- Public Member Functions inherited from inverseLaplacianProblem
 inverseLaplacianProblem ()
 Null constructor.
 
 inverseLaplacianProblem (int argc, char *argv[])
 Construct with argc and argv. Reads the thermocouples dictionary.
 
virtual ~inverseLaplacianProblem ()
 Destructor.
 
void set_g ()
 Set the right g size and fills it with zeros.
 
volScalarField list2Field (List< scalar > list, scalar innerField=0.0)
 Create a field with the hotSide boundary heat flux at the hotSide bounday cells for visualization.
 
void set_valueFraction ()
 Set valueFraction list values for Robin condition.
 
void solveDirect ()
 Solve direct problem.
 
void solve (const char *problem)
 Solve Laplacian problem without source term.
 
virtual void readThermocouples ()
 Identifies in the mesh the cells corresponding to the termocouples locations.
 
Eigen::VectorXd fieldValueAtThermocouples (volScalarField &field)
 Interpolates the field value at the thermocouples points.
 
void differenceBetweenDirectAndMeasure ()
 Computes the difference between direct problem solution and measures Saves the difference vector in Tdiff.
 
Foam::vector cellDim (const faceList &ff, const pointField &pp, const cell &cc, labelList pLabels, pointField pLocal)
 Compute maximum cell dimension in x, y and z.
 
void restart ()
 Restart fields.
 
- Public Member Functions inherited from laplacianProblem
 laplacianProblem ()
 
 laplacianProblem (int argc, char *argv[])
 Construct with argc and argv.
 
 ~laplacianProblem ()
 
void truthSolve (List< scalar > mu_now, word folder="./ITHACAoutput/Offline/")
 Perform a truthsolve.
 
void project (label Nmodes)
 Perform a projection onto the POD modes.
 
- Public Member Functions inherited from reductionProblem
 reductionProblem ()
 Construct Null.
 
 ~reductionProblem ()
 
void setParameters ()
 Set Parameters Problems.
 
void genRandPar ()
 Generate Random Numbers.
 
void genRandPar (label tsize)
 Generate Random Numbers given the dimension of the training set.
 
void genEquiPar ()
 Generate Equidistributed Numbers.
 
void truthSolve ()
 Perform a TruthSolve.
 
void assignBC (volVectorField &s, label BC_ind, Vector< double > &value)
 Assign Boundary Condition to a volVectorField.
 
void assignBC (volScalarField &s, label BC_ind, double &value)
 Assign Boundary Condition to a volScalarField.
 
void reconstructFromMatrix (PtrList< volVectorField > &rec_field2, PtrList< volVectorField > &modes, label Nmodes, Eigen::MatrixXd coeff_matrix)
 Exact reconstruction using a certain number of modes for vector list of fields and the projection coefficients (volVectorField)
 
void reconstructFromMatrix (PtrList< volScalarField > &rec_field2, PtrList< volScalarField > &modes, label Nmodes, Eigen::MatrixXd coeff_matrix)
 Exact reconstruction using a certain number of modes for vector list of fields and the projection coefficients (volScalarField)
 
template<typename T , typename G >
void assignIF (T &s, G &value)
 Assign internal field condition.
 
template<typename T >
void computeLift (T &Lfield, T &liftfield, T &omfield)
 Homogenize the snapshot matrix, it works with PtrList of volVectorField and volScalarField.
 
template<typename T >
void computeLiftT (T &Lfield, T &liftfield, T &omfield)
 Virtual function to compute the lifting function.
 
void liftSolve ()
 Virtual function to compute the lifting function for scalar field.
 
void liftSolveT ()
 
void project ()
 General projection operation.
 
void writeMu (List< scalar > mu_now)
 Write out a list of scalar corresponding to the parameters used in the truthSolve.
 
std::vector< SPLINTER::RBFSpline > getCoeffManifoldRBF (PtrList< volVectorField > snapshots, PtrList< volVectorField > &modes, word rbfBasis="GAUSSIAN")
 Constructs the parameters-coefficients manifold for vector fields, based on RBF-spline model.
 
std::vector< SPLINTER::RBFSpline > getCoeffManifoldRBF (PtrList< volScalarField > snapshots, PtrList< volScalarField > &modes, word rbfBasis="GAUSSIAN")
 Constructs the parameters-coefficients manifold for scalar fields, based on RBF-spline model.
 
std::vector< SPLINTER::BSpline > getCoeffManifoldSPL (PtrList< volVectorField > snapshots, PtrList< volVectorField > &modes, label splDeg=3)
 Constructs the parameters-coefficients manifold for vector fields, based on the B-spline model.
 
std::vector< SPLINTER::BSpline > getCoeffManifoldSPL (PtrList< volScalarField > snapshots, PtrList< volScalarField > &modes, label splDeg=3)
 Constructs the parameters-coefficients manifold for scalar fields, based on the B-spline model.
 

Public Attributes

volScalarField & T
 Temperature field.
 
volScalarField & lambda
 Adjoint field.
 
volScalarField & deltaT
 Sensitivity field.
 
fvMesh & mesh
 Mesh.
 
Time & runTime
 RunTime.
 
double a
 Constant to define boundary conditions.
 
double b
 Constant to define boundary conditions.
 
double c
 Constant to define boundary conditions.
 
double d
 Constant to define boundary conditions.
 
List< scalar > heatFlux_gammaEx1
 Boundary heat flux at the gammaEx1 patch.
 
List< scalar > heatFlux_gammaEx2
 Boundary heat flux at the gammaEx2 patch.
 
List< scalar > heatFlux_gammaEx3
 Boundary heat flux at the gammaEx3 patch.
 
List< scalar > heatFlux_gammaEx4
 Boundary heat flux at the gammaEx4 patch.
 
label gammaEx1_ind
 gammaEx1 boundary patches label
 
label gammaEx2_ind
 gammaEx2 boundary patches label
 
label gammaEx3_ind
 gammaEx3 boundary patches label
 
label gammaEx4_ind
 gammaEx4 boundary patches label
 
PtrList< volScalarField > gField
 List of estimated heat fluxes used for post processing.
 
- Public Attributes inherited from inverseLaplacianProblem_CG
autoPtr< volScalarField > _lambda
 Adjoint field.
 
autoPtr< volScalarField > _deltaT
 Sensibility temperature field.
 
List< scalar > valueFractionAdj
 Value fraction for the adjoint Robin BC.
 
PtrList< volScalarField > Tfield
 List of temperature solutions.
 
PtrList< volScalarField > lambdaField
 List of adjoint solutions.
 
PtrList< volScalarField > deltaTfield
 List of sensitivity solutions.
 
bool interpolation
 Flag for interpolation of the temperature measurements.
 
bool interpolationPlaneDefined
 Flag for definition of interpolation plane.
 
int cgIter
 Conjugate Gradient (CG) interations counter.
 
int cgIterMax
 Maximum CG iterations.
 
bool saveSolInLists = 0
 Flag to save solutions in lists.
 
Eigen::MatrixXd Jlist
 Vector to store the const function J.
 
double gradJ_L2norm
 L2 norm of the gradient of J.
 
double Jtol
 Absolute stopping criterion for the CG.
 
double JtolRel
 Relative stopping criterion for the CG.
 
double gamma
 Conjugate coefficient.
 
double gamma_den
 Denoinator of the conjugate coefficient.
 
double beta
 CG search step size.
 
List< scalar > P
 Search direction.
 
List< scalar > gradJ
 Gradient of the cost function.
 
Eigen::VectorXd Tsens
 Vector of solutions of the sensitivity problem at the thermocouples points.
 
List< Eigen::MatrixXd > ArbT
 Temperature reduced matrix.
 
List< Eigen::MatrixXd > ArbLambda
 Adjoint reduced matrix.
 
List< Eigen::MatrixXd > ArbDeltaT
 Sensitivity reduced matrix.
 
thermocouplesPlane interpolationPlane
 Interpolation plane.
 
Eigen::VectorXd cellsInPlane
 IDs of the cells in the interpolation plane.
 
- Public Attributes inherited from inverseLaplacianProblem
ITHACAparameterspara
 
autoPtr< volScalarField > _T
 Temperature field.
 
autoPtr< fvMesh > _mesh
 Mesh.
 
autoPtr< simpleControl > _simple
 simpleControl
 
autoPtr< fv::options > _fvOptions
 fvOptions
 
autoPtr< Time > _runTime
 Time.
 
dimensionedScalar DT
 Dummy thermal conductivity with unitary value.
 
double k
 Thermal diffusivity [W/(m K)].
 
double H
 Heat transfer coefficient [W/(m2 K)].
 
bool thermocouplesRead = 0
 Flag to know if thermocouples file was read.
 
int thermocouplesNum
 Number of thermocouples.
 
double J
 Cost funtion [K^2].
 
double L2norm
 
double LinfNorm
 
scalar homogeneousBC = 0.0
 Homogenerous BC.
 
List< scalar > homogeneousBCcoldSide
 List of zeros of the size of coldSide patch.
 
List< scalar > Tf
 Temperature at coldSide [K].
 
List< scalar > refGrad
 Reference gradient for the Robin BC.
 
List< scalar > valueFraction
 Value fraction for the Robin BC.
 
label hotSide_ind
 Index of the hotSide patch.
 
label coldSide_ind
 Index of the coldSide patch.
 
List< scalar > g
 Heat flux at hotSide [W/m2].
 
List< List< scalar > > gList
 List of boundary heat fluxes.
 
List< scalar > gTrue
 True heat flux at hotSide [w/m2].
 
List< scalar > faceCellArea
 List of patch faces areas [m2].
 
List< vector > thermocouplesPos
 List containing the positions of the thermocouples.
 
List< int > thermocouplesCellID
 List of cells indices containing a thermocouple.
 
List< int > thermocouplesCellProc
 List of incedes of the processors contining each thermocouple.
 
Eigen::VectorXd Tmeas
 Vector of measured temperatures at the thermocouples locations [K].
 
Eigen::VectorXd Tdirect
 Vector of computed temperatures at the thermocouples locations [K].
 
Eigen::VectorXd Tdiff
 Difference between computed and measured temperatures at the thermocouples.
 
label nProcs
 Number of processors.
 
- Public Attributes inherited from laplacianProblem
PtrList< volScalarField > Tfield
 List of snapshots for the solution.
 
PtrList< volScalarField > Tonline
 List of snapshots for the solution.
 
volScalarModes Tmodes
 List of POD modes.
 
PtrList< fvScalarMatrix > operator_list
 List of operators.
 
List< scalar > theta
 Theta (coefficients of the affine expansion)
 
PtrList< volScalarField > nu_list
 Nu (diffusivity)
 
label NTmodes
 Number of modes reduced problem.
 
List< Eigen::MatrixXd > A_matrices
 A matrices.
 
Eigen::MatrixXd source
 Source vector.
 
autoPtr< volScalarField > _T
 Temperature field.
 
autoPtr< volScalarField > _S
 Source Term.
 
autoPtr< volScalarField > _nu
 Diffusivity.
 
autoPtr< fvMesh > _mesh
 Mesh.
 
autoPtr< Time > _runTime
 Time.
 
- Public Attributes inherited from reductionProblem
label Pnumber
 Number of parameters.
 
label Tnumber
 Dimension of the training set (used only when gerating parameters without input)
 
Eigen::MatrixXd mu
 Row matrix of parameters.
 
Eigen::MatrixXd mu_range
 Range of the parameter spaces.
 
Eigen::MatrixXd mu_samples
 Matrix of parameters to be used for PODI, where each row corresponds to a sample point. In this matrix the time dimension is regarded as a parameter for unsteady problems.
 
double mu_cur
 Current value of the parameter.
 
bool podex
 Boolean variable, it is 1 if the POD has already been computed, else 0.
 
bool offline
 Boolean variable, it is 1 if the Offline phase has already been computed, else 0.
 
IOdictionary * ITHACAdict
 dictionary to store input output infos
 
autoPtr< argList > _args
 argList
 
ITHACAparallelparal
 parallel handling
 
label folderN = 1
 Counter to save intermediate steps in the correct folder, for unsteady and some stationary cases.
 
label counter = 1
 Counter used for the output of the full order solutions.
 
Eigen::MatrixXi inletIndex
 Matrix that contains informations about the inlet boundaries.
 
Eigen::MatrixXi inletPatch
 Matrix that contains informations about the inlet boundaries without specifing the direction Rows = Number of parametrized boundary conditions
Cols = 1
Example:
example.inletIndex.resize(2, 1);
example.inletIndex(0, 0) = 0;
example.inletIndex(1, 0) = 1;
Means that there are two parametrized boundary conditions of which the first row is of patch 0 and the second row of patch 1.
 
Eigen::MatrixXi inletIndexT
 

Detailed Description

Class where the first inverse heat transfer problem tutorial is solved using Alifanov's regularization.

It is a child of the inverseLaplacianProblem_CG class and some of its functions are overridden to be adapted to the specific case.

Examples
IHTP01inverseLaplacian.C.

Definition at line 234 of file IHTP01inverseLaplacian.H.

Constructor & Destructor Documentation

◆ IHTP01inverseLaplacian_CG()

IHTP01inverseLaplacian_CG::IHTP01inverseLaplacian_CG ( int argc,
char * argv[] )
inlineexplicit

Definition at line 237 of file IHTP01inverseLaplacian.H.

Member Function Documentation

◆ assignDirectBC()

void IHTP01inverseLaplacian_CG::assignDirectBC ( )
inlinevirtual

Assign the correct boundary condition to direct problem and assign -g/k to the hotSide patch.

Reimplemented from inverseLaplacianProblem.

Definition at line 325 of file IHTP01inverseLaplacian.H.

◆ postProcess()

void IHTP01inverseLaplacian_CG::postProcess ( word folder,
word heatFluxFieldName,
scalar innerField = 0.0 )
inline

Post process all the estimated heat fluxes heatFluxFieldName inside folder computing the relative error field with respect to gTrue with the related L2 and Linfty norms.

Parameters
[in]folderFolder where the estimatied heat fluxes are read and the post processed results saved
[in]heatFluxFieldNameName of the heat flux to post process
[in]innerFieldValue of the output field in the interior of the domain (0 by default)

Definition at line 316 of file IHTP01inverseLaplacian.H.

◆ solveTrue()

void IHTP01inverseLaplacian_CG::solveTrue ( )
inlinevirtual

Perform a solution of the direct problem with the correct boundary conditions.

Reimplemented from inverseLaplacianProblem.

Examples
IHTP01inverseLaplacian.C.

Definition at line 333 of file IHTP01inverseLaplacian.H.

Member Data Documentation

◆ a

double IHTP01inverseLaplacian_CG::a

Constant to define boundary conditions.

Examples
IHTP01inverseLaplacian.C.

Definition at line 269 of file IHTP01inverseLaplacian.H.

◆ b

double IHTP01inverseLaplacian_CG::b

Constant to define boundary conditions.

Examples
IHTP01inverseLaplacian.C.

Definition at line 272 of file IHTP01inverseLaplacian.H.

◆ c

double IHTP01inverseLaplacian_CG::c

Constant to define boundary conditions.

Examples
IHTP01inverseLaplacian.C.

Definition at line 275 of file IHTP01inverseLaplacian.H.

◆ d

double IHTP01inverseLaplacian_CG::d

Constant to define boundary conditions.

Examples
IHTP01inverseLaplacian.C.

Definition at line 278 of file IHTP01inverseLaplacian.H.

◆ deltaT

volScalarField& IHTP01inverseLaplacian_CG::deltaT

Sensitivity field.

Definition at line 260 of file IHTP01inverseLaplacian.H.

◆ gammaEx1_ind

label IHTP01inverseLaplacian_CG::gammaEx1_ind

gammaEx1 boundary patches label

Definition at line 293 of file IHTP01inverseLaplacian.H.

◆ gammaEx2_ind

label IHTP01inverseLaplacian_CG::gammaEx2_ind

gammaEx2 boundary patches label

Definition at line 296 of file IHTP01inverseLaplacian.H.

◆ gammaEx3_ind

label IHTP01inverseLaplacian_CG::gammaEx3_ind

gammaEx3 boundary patches label

Definition at line 299 of file IHTP01inverseLaplacian.H.

◆ gammaEx4_ind

label IHTP01inverseLaplacian_CG::gammaEx4_ind

gammaEx4 boundary patches label

Definition at line 302 of file IHTP01inverseLaplacian.H.

◆ gField

PtrList<volScalarField> IHTP01inverseLaplacian_CG::gField

List of estimated heat fluxes used for post processing.

Definition at line 305 of file IHTP01inverseLaplacian.H.

◆ heatFlux_gammaEx1

List<scalar> IHTP01inverseLaplacian_CG::heatFlux_gammaEx1

Boundary heat flux at the gammaEx1 patch.

Definition at line 281 of file IHTP01inverseLaplacian.H.

◆ heatFlux_gammaEx2

List<scalar> IHTP01inverseLaplacian_CG::heatFlux_gammaEx2

Boundary heat flux at the gammaEx2 patch.

Definition at line 284 of file IHTP01inverseLaplacian.H.

◆ heatFlux_gammaEx3

List<scalar> IHTP01inverseLaplacian_CG::heatFlux_gammaEx3

Boundary heat flux at the gammaEx3 patch.

Definition at line 287 of file IHTP01inverseLaplacian.H.

◆ heatFlux_gammaEx4

List<scalar> IHTP01inverseLaplacian_CG::heatFlux_gammaEx4

Boundary heat flux at the gammaEx4 patch.

Definition at line 290 of file IHTP01inverseLaplacian.H.

◆ lambda

volScalarField& IHTP01inverseLaplacian_CG::lambda

Adjoint field.

Definition at line 257 of file IHTP01inverseLaplacian.H.

◆ mesh

fvMesh& IHTP01inverseLaplacian_CG::mesh

Mesh.

Definition at line 263 of file IHTP01inverseLaplacian.H.

◆ runTime

Time& IHTP01inverseLaplacian_CG::runTime

RunTime.

Definition at line 266 of file IHTP01inverseLaplacian.H.

◆ T

volScalarField& IHTP01inverseLaplacian_CG::T

Temperature field.

Definition at line 254 of file IHTP01inverseLaplacian.H.


The documentation for this class was generated from the following file: