19 Eigen::MatrixXd plist)
29void LRSensitivity::setAll()
53 if (
M().MObuilt ==
true)
59 std::cout <<
"Model output not computed or assigned, program aborted" <<
87 for (label j = 0; j <
Npoints; j++)
104 for (label j = 0; j <
Npoints; j++)
106 yn(j) = (
y(j) -
Ey) / std::sqrt(
Vy);
115 Eigen::VectorXd sol =
MatXn.transpose() *
yn;
116 betas =
A.colPivHouseholderQr().solve(sol);
122 "Statistics about inputs or output are not computed yet, nothing to do ..." <<
135 for (label j = 0; j <
Npoints; j++)
145 D += (
y(j) -
Ey) * (
y(j) -
Ey);
153 "Linear regression coefficients are not computed yet, nothing to do ..." <<
static Eigen::VectorXd samplingMC(std::string pdftype, double &lowerE, double &upperE, double &distpara1, double &distpara2, label &Npoints)
void getYstat()
Method to compute Ey and Vy, it sets Ydone=true.
void getXstats()
Method to compute EX and VX, it sets Xdone=true.
double Vy
Variance of the output.
Eigen::VectorXd y
Vectors to store the output of the model.
Eigen::VectorXd yn
Vector to store the normalized output of the model.
Eigen::MatrixXd MatXn
Matrices storing the independent variables' normalized values.
double QI
double to quantify the goodness of linear regression from 0 (no linearity) to 1 (perfect linearity) a...
Eigen::MatrixXd MatX
Matrices storing the independent variables' values.
Eigen::VectorXd VX
Vector to store the variances of the parameters.
double Ey
Mean value of the output.
label No_parameters
Number of parameters used for the analysis.
void getBetas()
Method to compute SRCs, it sets bdone=true.
void load_output()
Method to load the output of FOM/ROM inside member LRsensitivity member y.
label Npoints
Number of points used for Monte Carlo sampling.
bool bdone
boolean variable to check if SRCs are computed
Eigen::VectorXd ylin
Vector to store the result of linear approximation.
Eigen::MatrixXd trainingRange
Matrix to store the range used in training/offline stage.
Eigen::VectorXd betas
Vector to store the standardized regression coefficient (SRC)
void assessQuality()
Method to compute the quality of linear regression approximation.
void buildSamplingSet(std::vector< std::string > &pdflist, Eigen::MatrixXd plist)
Method to build MatX, it internally calls ITHACAsampling::samplingMC pdflist is the list with the nam...
Eigen::VectorXd EX
Vector to store the meanvalues of the parameters.
autoPtr< FofM > M
Figure of merit object.
bool Ydone
boolean variable to check if Ey and Vy are computed
bool Xdone
boolean variable to check if EX and VX are computed