Loading...
Searching...
No Matches
20incrementalPOD.C

Introduction to the incremental POD tutorial

In this tutorial, we test an incremental POD algorithm. The incremental POD algorithm implemented in ITHACA-FV is the one proposed by Oxberry et al. in the paper "Limited-memory adaptive snapshot selection for proper orthogonal decomposition"

To test the algorithm, we use a parameterized heat conduction problem. The problem equations are:

\[ \nabla \cdot (k \nabla T) = S \]

where \(k\) is the diffusivity, \(T\) is the temperature and \(S\) is the source term. The problem discretised and formalized in matrix equation reads:

\[ AT = S \]

where \(A\) is the matrix of interpolation coefficients, \(T\) is the vector of unknowns and \(S\) is the vector representing the source term. The domain is subdivided in 9 different parts and each part has parametrized diffusivity. See the image below for a clarification.

In this tutorial, we solve the heat conduction problem for several values of the parameter to generate the snapshots. Then, we created the POD space from these snapshot using both the classical POD and the incremental POD. Finally, to test the goodness of the incremental POD space, we genereate one more solution for a new value of the parameters and project it onto the POD space. Computing the relative error of the projection, we can test if the incremental POD space is able to approximate the solution space.

The ITHACAPODdict file

In this section are explained the main steps necessary to construct the tutorial N°2

The necessary header files

First of all let's have a look to the header files that needs to be included and what they are responsible for:

The standard C++ header for input/output stream objects:

#include <iostream>

The OpenFOAM header files:

#include "fvCFD.H"
#include "IOmanip.H"
#include "Time.H"

The header file of ITHACA-FV necessary for this tutorial

#include "ITHACAPOD.H"
Header file of the ITHACAPOD class.
Header file of the ITHACAutilities namespace.

The Eigen library for matrix manipulation and linear and non-linear algebra operations:

And we define some mathematical constants and include the standard header for common math operations:

#define _USE_MATH_DEFINES
#include <cmath>

Implementation of the tutorial02 class

Then we can define the tutorialIPOD class as a child of the laplacianProblem class

Class to implement a full order laplacian parametrized problem.
Class where the tutorial number 20 is implemented.
{
public:
explicit tutorialIPOD(int argc, char* argv[])
:
laplacianProblem(argc, argv),
T(_T()),
nu(_nu()),
S(_S())
{}
tutorialIPOD(int argc, char *argv[])
_T
Definition createT.H:30
volScalarField & T
Definition createT.H:46
dimensionedScalar & nu
_nu
_S
volScalarField S(IOobject("S", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE), T.mesh(), dimensionedScalar("zero", dimensionSet(0, 0, -1, 1, 0, 0, 0), 0))

The members of the class are the fields that needs to be manipulated during the resolution of the problem

Inside the class it is defined the offline solve method according to the specific parametrized problem that needs to be solved.

void offlineSolve(word folder = "./ITHACAoutput/Offline/")
void offlineSolve(word folder="./ITHACAoutput/Offline/")
It perform an offline Solve.
{

If the offline solve has already been performed than read the existing snapshots

if (offline)
bool offline
Boolean variable, it is 1 if the Offline phase has already been computed, else 0.
{
ITHACAstream::readMatrix(folder + "/mu_samples_mat.txt");
}
PtrList< volScalarField > Tfield
List of snapshots for the solution.
Eigen::MatrixXd mu_samples
Matrix of parameters to be used for PODI, where each row corresponds to a sample point....
List< Eigen::MatrixXd > readMatrix(word folder, word mat_name)
Read a three dimensional matrix from a txt file in Eigen format.
void read_fields(PtrList< GeometricField< Type, PatchField, GeoMesh > > &Lfield, word Name, fileName casename, int first_snap, int n_snap)
Function to read a list of fields from the name of the field and casename.

else perform the offline solve where a loop over all the parameters is performed:

for (label i = 0; i < mu.rows(); i++)
Eigen::MatrixXd mu
Row matrix of parameters.
label i
Definition pEqn.H:46
{
for (label j = 0; j < mu.cols() ; j++)
{
mu_now[j] = mu(i, j);
theta[j] = mu(i, j);
}
List< scalar > theta
Theta (coefficients of the affine expansion)

a 0 internal constant value is assigned before each solve command with the lines

assignIF(T, IF);
void assignIF(T &s, G &value)
Assign internal field condition.

and the solve operation is performed, see also the laplacianProblem class for the definition of the methods

truthSolve(mu_now, folder);
void truthSolve()
Perform a TruthSolve.

The we need also to implement a method to set/define the source term that may be problem dependent. In this case the source term is defined with a hat function:

void SetSource()
void SetSource()
Define the source term function.
{
volScalarField yPos = T.mesh().C().component(vector::Y).ref();
volScalarField xPos = T.mesh().C().component(vector::X).ref();
{
S[counter] = Foam::sin(xPos[counter] / 0.9 * M_PI) + Foam::sin(
yPos[counter] / 0.9 * M_PI);
}
forAll(example_CG.gList, solutionI)
Definition CGtest.H:21
label counter
Counter used for the output of the full order solutions.
volScalarField xPos
volScalarField yPos
}

Define by:

\[ S = \sin(\frac{\pi}{L}\cdot x) + \sin(\frac{\pi}{L}\cdot y) \]

where \(L\) is the dimension of the thermal block which is equal to 0.9.

With the following is defined a method to set compute the parameter of the affine expansion:

void compute_nu()
void compute_nu()
Compute the diffusivity in each subdomain.
{

The list of parameters is resized according to number of parametrized regions

nu_list.resize(9);
PtrList< volScalarField > nu_list
Nu (diffusivity)

The nine different volScalarFields to identify the viscosity in each domain are initialized:

volScalarField nu1(nu);
volScalarField nu2(nu);
volScalarField nu3(nu);
volScalarField nu4(nu);
volScalarField nu5(nu);
volScalarField nu6(nu);
volScalarField nu7(nu);
volScalarField nu8(nu);
volScalarField nu9(nu);

and the 9 different boxes are defined:

Eigen::MatrixXd Box1(2, 3);
Box1 << 0, 0, 0, 0.3, 0.3, 0.1;
Eigen::MatrixXd Box2(2, 3);
Box2 << 0.3, 0, 0, 0.6, 0.3, 0.1;
Eigen::MatrixXd Box3(2, 3);
Box3 << 0.6, 0, 0, 0.91, 0.3, 0.1;
Eigen::MatrixXd Box4(2, 3);
Box4 << 0, 0.3, 0, 0.3, 0.6, 0.1;
Eigen::MatrixXd Box5(2, 3);
Box5 << 0.3, 0.3, 0, 0.6, 0.6, 0.1;
Eigen::MatrixXd Box6(2, 3);
Box6 << 0.6, 0.3, 0, 0.91, 0.6, 0.1;
Eigen::MatrixXd Box7(2, 3);
Box7 << 0, 0.6, 0, 0.3, 0.91, 0.1;
Eigen::MatrixXd Box8(2, 3);
Box8 << 0.3, 0.61, 0, 0.6, 0.91, 0.1;
Eigen::MatrixXd Box9(2, 3);

and for each of the defined boxes the relative diffusivity field is set to 1 inside the box and remain 0 elsewhere:

void setBoxToValue(GeometricField< Type, fvPatchField, volMesh > &field, Eigen::MatrixXd Box, Type value)
Set value of a volScalarField to a constant inside a given box.

See also the ITHACAutilities::setBoxToValue for more details.

The list of diffusivity fields is set with:

nu_list.set(0, (nu1).clone());
nu_list.set(1, (nu2).clone());
nu_list.set(2, (nu3).clone());
nu_list.set(3, (nu4).clone());
nu_list.set(4, (nu5).clone());
nu_list.set(5, (nu6).clone());
nu_list.set(6, (nu7).clone());
nu_list.set(7, (nu8).clone());
nu_list.set(8, (nu9).clone());
}

Definition of the main function

Once the tutorialIPOD class is defined the main function is defined, an example of type tutorialIPOD is constructed:

tutorialIPOD example(argc, argv);

the number of parameter is set:

example.Pnumber = 9;
example.setParameters();

the range of the parameters is defined:

example.mu_range.col(0) = Eigen::MatrixXd::Ones(9, 1) * 0.001;
example.mu_range.col(1) = Eigen::MatrixXd::Ones(9, 1) * 0.1;

and 500 random combinations of the parameters are generated:

example.genRandPar(example.Tnumber);

the size of the list of values that are multiplying the affine forms is set:

example.theta.resize(9);

the source term is defined, the compute_nu and assemble_operator functions are called

example.SetSource();
example.compute_nu();
example.assemble_operator();

then the Offline full order Solve is performed:

example.offlineSolve();

Once the Offline solve is performed the modes ar obtained using the ITHACAPOD::getModes function:

ITHACAPOD::getModes(example.Tfield, example.Tmodes, example._T().name(),
void getModes(PtrList< GeometricField< Type, PatchField, GeoMesh > > &snapshots, PtrList< GeometricField< Type, PatchField, GeoMesh > > &modes, word fieldName, bool podex, bool supex, bool sup, label nmodes, bool correctBC)
Computes the bases or reads them for a field.
Definition ITHACAPOD.C:93

Then, the incremental POD is initialized

scalarIncrementalPOD IPOD(example.Tfield[0], tolleranceSVD, "L2");
Implementation of a incremental POD algorithm according to Oxberry et al.

and filled

Finally, we do some post processing

The plain program

Here there's the plain code

/*---------------------------------------------------------------------------*\
██╗████████╗██╗ ██╗ █████╗ ██████╗ █████╗ ███████╗██╗ ██╗
██║╚══██╔══╝██║ ██║██╔══██╗██╔════╝██╔══██╗ ██╔════╝██║ ██║
██║ ██║ ███████║███████║██║ ███████║█████╗█████╗ ██║ ██║
██║ ██║ ██╔══██║██╔══██║██║ ██╔══██║╚════╝██╔══╝ ╚██╗ ██╔╝
██║ ██║ ██║ ██║██║ ██║╚██████╗██║ ██║ ██║ ╚████╔╝
╚═╝ ╚═╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═════╝╚═╝ ╚═╝ ╚═╝ ╚═══╝
* In real Time Highly Advanced Computational Applications for Finite Volumes
* Copyright (C) 2017 by the ITHACA-FV authors
-------------------------------------------------------------------------------
License
This file is part of ITHACA-FV
ITHACA-FV is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
ITHACA-FV is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with ITHACA-FV. If not, see <http://www.gnu.org/licenses/>.
Description
Example of a heat transfer Reduction Problem
SourceFiles
20incrementalPOD.C
\*---------------------------------------------------------------------------*/
#include <iostream>
#include "fvCFD.H"
#include "IOmanip.H"
#include "Time.H"
#include "ITHACAPOD.H"
#include "incrementalPOD.H"
#include <Eigen/Dense>
#define _USE_MATH_DEFINES
#include <cmath>
{
public:
explicit tutorialIPOD(int argc, char* argv[])
:
laplacianProblem(argc, argv),
T(_T()),
nu(_nu()),
S(_S())
{}
volScalarField& T;
volScalarField& nu;
volScalarField& S;
void offlineSolve(word folder = "./ITHACAoutput/Offline/")
{
if (offline)
{
ITHACAstream::readMatrix(folder + "/mu_samples_mat.txt");
}
else
{
List<scalar> mu_now(9);
scalar IF = 0;
for (label i = 0; i < mu.rows(); i++)
{
for (label j = 0; j < mu.cols() ; j++)
{
mu_now[j] = mu(i, j);
theta[j] = mu(i, j);
}
assignIF(T, IF);
Info << i << endl;
truthSolve(mu_now, folder);
}
}
}
void SetSource()
{
volScalarField yPos = T.mesh().C().component(vector::Y).ref();
volScalarField xPos = T.mesh().C().component(vector::X).ref();
{
S[counter] = Foam::sin(xPos[counter] / 0.9 * M_PI) + Foam::sin(
yPos[counter] / 0.9 * M_PI);
}
}
void compute_nu()
{
nu_list.resize(9);
volScalarField nu1(nu);
volScalarField nu2(nu);
volScalarField nu3(nu);
volScalarField nu4(nu);
volScalarField nu5(nu);
volScalarField nu6(nu);
volScalarField nu7(nu);
volScalarField nu8(nu);
volScalarField nu9(nu);
Eigen::MatrixXd Box1(2, 3);
Box1 << 0, 0, 0, 0.3, 0.3, 0.1;
Eigen::MatrixXd Box2(2, 3);
Box2 << 0.3, 0, 0, 0.6, 0.3, 0.1;
Eigen::MatrixXd Box3(2, 3);
Box3 << 0.6, 0, 0, 0.91, 0.3, 0.1;
Eigen::MatrixXd Box4(2, 3);
Box4 << 0, 0.3, 0, 0.3, 0.6, 0.1;
Eigen::MatrixXd Box5(2, 3);
Box5 << 0.3, 0.3, 0, 0.6, 0.6, 0.1;
Eigen::MatrixXd Box6(2, 3);
Box6 << 0.6, 0.3, 0, 0.91, 0.6, 0.1;
Eigen::MatrixXd Box7(2, 3);
Box7 << 0, 0.6, 0, 0.3, 0.91, 0.1;
Eigen::MatrixXd Box8(2, 3);
Box8 << 0.3, 0.61, 0, 0.6, 0.91, 0.1;
Eigen::MatrixXd Box9(2, 3);
Box9 << 0.6, 0.6, 0, 0.9, 0.91, 0.1;
nu_list.set(0, (nu1).clone());
nu_list.set(1, (nu2).clone());
nu_list.set(2, (nu3).clone());
nu_list.set(3, (nu4).clone());
nu_list.set(4, (nu5).clone());
nu_list.set(5, (nu6).clone());
nu_list.set(6, (nu7).clone());
nu_list.set(7, (nu8).clone());
nu_list.set(8, (nu9).clone());
}
{
for (int i = 0; i < nu_list.size(); i++)
{
operator_list.append(fvm::laplacian(nu_list[i], T));
}
}
volScalarField solveFull(double _mu)
{
word folder = "./ITHACAoutput/test/";
scalar IF = 0;
List<scalar> mu_now(9);
volScalarField& T = _T();
for (label j = 0; j < mu.cols() ; j++)
{
mu_now[j] = _mu;
theta[j] = _mu;
}
assignIF(T, IF);
truthSolve(mu_now, folder);
return T;
}
};
int main(int argc, char* argv[])
{
// Create the example object of the tutorialIPOD type
tutorialIPOD example(argc, argv);
// Read some parameters from file
example._runTime());
int NmodesTout = para->ITHACAdict->lookupOrDefault<int>("NmodesTout", 15);
int NmodesTproj = para->ITHACAdict->lookupOrDefault<int>("NmodesTproj", 10);
double tolleranceSVD =
para->ITHACAdict->lookupOrDefault<double>("tolleranceSVD", 1);
// Set the number of parameters
example.Pnumber = 9;
example.Tnumber = NmodesTout;
// Set the parameters
example.setParameters();
// Set the parameter ranges, in all the subdomains the diffusivity varies between
// 0.001 and 0.1
example.mu_range.col(0) = Eigen::MatrixXd::Ones(9, 1) * 0.001;
example.mu_range.col(1) = Eigen::MatrixXd::Ones(9, 1) * 0.1;
// Generate the Parameters
example.genRandPar(example.Tnumber);
// Set the size of the list of values that are multiplying the affine forms
example.theta.resize(9);
// Set the source term
example.SetSource();
// Compute the diffusivity field for each subdomain
example.compute_nu();
// Assemble all the operators of the affine decomposition
example.assemble_operator();
// Perform an Offline Solve
example.offlineSolve();
// Perform a POD decomposition and get the modes
ITHACAPOD::getModes(example.Tfield, example.Tmodes, example._T().name(),
example.podex, 0, 0,
NmodesTout);
// Set up the incremental POD space
scalarIncrementalPOD IPOD(example.Tfield[0], tolleranceSVD, "L2");
// Fill the incremental POD space
for (int fieldI = 1; fieldI < example.Tfield.size(); fieldI++)
{
IPOD.addSnapshot(example.Tfield[fieldI]);
}
IPOD.writeModes();
// Post processing
word folder = "./ITHACAoutput/testReconstruction";
// Compute new full order solution
volScalarField Tfull(example.solveFull(0.05));
PtrList<volScalarField> TfullList;
TfullList.append(Tfull.clone());
PtrList<volScalarField> Tproj;
// Project the full order solution onto the POD space
example.Tmodes.projectSnapshots(TfullList, Tproj, NmodesTproj);
ITHACAstream::exportSolution(Tfull, "1", folder, "Tfull");
ITHACAstream::exportSolution(Tproj[0], "1", folder, "Tpod");
// Compute the relative error between POD projected field and full order snapshot
double EPS = 1e-16;
volScalarField relativeErrorField(Tproj[0]);
for (label i = 0; i < relativeErrorField.internalField().size(); i++)
{
if (std::abs(Tfull.ref()[i]) < EPS)
{
relativeErrorField.ref()[i] = (std::abs(Tfull.ref()[i] - Tproj[0].ref()[i])) /
EPS;
}
else
{
relativeErrorField.ref()[i] = (std::abs(Tfull.ref()[i] - Tproj[0].ref()[i])) /
Tfull.ref()[i];
}
}
ITHACAstream::exportSolution(relativeErrorField,
"1", folder,
"relativeErrorField_POD");
Info << "Relative error L2 norm POD = " << ITHACAutilities::L2Norm(
relativeErrorField) << endl;
// Project the full order solution onto the incremental POD space
IPOD.projectSnapshots(TfullList, Tproj);
ITHACAstream::exportSolution(Tproj[0], "1", folder, "Tipod");
volScalarField Tipod = Tproj[0];
// Compute the relative error between incremental POD projected field and full order snapshot
for (label i = 0; i < relativeErrorField.internalField().size(); i++)
{
if (std::abs(Tfull.ref()[i]) < EPS)
{
relativeErrorField.ref()[i] = (std::abs(Tfull.ref()[i] - Tipod.ref()[i])) / EPS;
}
else
{
relativeErrorField.ref()[i] = (std::abs(Tfull.ref()[i] - Tipod.ref()[i])) /
Tfull.ref()[i];
}
}
ITHACAstream::exportSolution(relativeErrorField,
"1", folder,
"relativeErrorField_IPOD");
Info << "\n\nRelative error L2 norm incrementalPOD = " <<
ITHACAutilities::L2Norm(relativeErrorField) << endl;
}
//--------
Header file of the reducedLaplacian class.
Class for the definition of some general parameters, the parameters must be defined from the file ITH...
IOdictionary * ITHACAdict
Dictionary for input objects from file.
static ITHACAparameters * getInstance()
Gets an instance of ITHACAparameters, to be used if the instance is already existing.
PtrList< fvScalarMatrix > operator_list
List of operators.
autoPtr< volScalarField > _T
Temperature field.
autoPtr< volScalarField > _nu
Diffusivity.
autoPtr< volScalarField > _S
Source Term.
volScalarField & S
Source term field.
volScalarField & nu
Diffusivity field.
volScalarField & T
[tutorialIPOD] Temperature field
volScalarField solveFull(double _mu)
Performs a full order solution for a uniform value of mu.
void assemble_operator()
Construct the operator_list where each term of the affine decomposition is stored.
int main(int argc, char *argv[])
Header file of the incrementalPOD class.
Header file of the laplacianProblem class.
void exportSolution(GeometricField< Type, PatchField, GeoMesh > &s, fileName subfolder, fileName folder, word fieldName)
Export a field to file in a certain folder and subfolder.
double L2Norm(GeometricField< scalar, fvPatchField, volMesh > &field)
Definition ITHACAerror.C:41